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We discuss Zhang's model of SOC in the framework of hyperbolic dynamical 
systems with singularities. The fractal structure of the invariant energy distribu- 
tion, correlation decay-like phenomena, and symbolic coding are discussed. 
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Systems exhibiting self-organized criticality (SOC) reach spontaneously an 
equilibrium state with scale-invariant characteristics, reminiscent of tradi- 
tional equilibrium systems at critical point. (1, 5) At the moment, no descrip- 
tion of these models from a dynamical system point of view has been tempted. 

In this letter, we analyze Zhang's model with constant activation 
energy in a dynamical systems framework and outline some key properties. 
Addition of energy at a given site induces a piecewise affine transformation 
on the set of stable configurations, giving the redistribution of energy after 
the corresponding avalanches. The domains of continuity of this mapping 
partition the set of stable configurations so that there is a one to one 
correspondence between the partition elements and the characteristic of 
the avalanches. We then show how the whole dynamics is described as a 
piecewise affine hyperbolic system with SBR invariant measures. We discuss 
the question of ergodicity in this mathematical framework. We then give 
evidences that the support of the invariant energy measure can be fractal 
for certain values of Ec. As a result, we exhibit nontrivial behavior even for 
one-dimensional models, for Ec/~E < 1 namely, outside the range usually 
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considered. The existence of a singularity set implies that the distance 
between two initial conditions whose trajectories enter eventually two dif- 
ferent elements at a given time, increases. This is the only separation effect 
one has and this gives an explanation of the initial conditions sensitivity 
observed by Bak. 

DESCRIPTION OF THE MODEL 

In this paper we deal with Zhang's model on a d-dimensional, connected 
subgraph A ~ Z d, with nearest neighbors edges, though the formalism we 
develop holds almost word by word for more general graphs. ~3) Let ~A be 
the boundary of A, namely the set of points in Z d at distance 1 from A and 
N the cardinality of A. Each site i e A is characterized by its energy Ei, 
which is a nonnegative real number. The "state" of the network is completely 
defined by the configuration of energies E = {Eg} z~,~. Let Ec be a real, 
positive number, called the critical energy, and Q = [0, Ec[ N. A configura- 
tion E is "stable" iff E e ~2 and "unstable" or critical otherwise. If E is stable 
then we choose a site i at random with probability 1/N, and add to it 
energy rE. In the initial model by Zhang ~5) the energy quantum fiE was not 
a constant. In this paper we take fie as a constant, fixed to fie = 1 without 
loss of generality. If a site i is critical (E i > Ec), its whole energy is relaxed 
in equal parts to its 2d neighbors. The sites of ~ have always zero energy 
(dissipation on the boundaries). An avalanche is characterized by the suc- 
cession of relaxation events generated by the activation of a given site, until 
a stable state is reached. Two avalanches are said to be equivalent iff they 
have the same succession of relaxation events, i.e., if the same sites relax at 
the same time. 

PIECEWlSE AFFINE M A P P I N G S  

Addition of energy at site i induces a transformation ~ on ~2 which is 
either the trivial translation along the direction i (the energy of i increases 
without relaxation) or gives the stable state obtained after the avalanche. 
Due to the very definition of the model, ~ is not a continuous map but 
is partitioned into a finite number of elements 5Pl, l e  {1,..., d ( i ) } ,  such 

d e f  ~ l that ~ l . ~  = Y i is continuous. Each element 5P~ corresponds to a class of 
equivalent avalanches. Therefore all characteristics of an avalanche are 
given when knowing the corresponding element 5r and mappings Y~. The 
5-1's are affine, i.e., J ~ ( E )  = 5r + fiEei), where ~ I  is linear, and el is the 
canonical basis vector of g~N corresponding to the activation of site i. Each 
element 5Pl is defined by simple sets of inequalities. For  example, the 
element corresponding to "trivial avalanches" (activation of the site i 
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without generating any relaxation) is simply given by the inequality Ei < 
E c -  1; the element corresponding to one step on the left in one dimension 
b y  E i >~ Ec -- 1, E i 1 + Ei /2 < Ec- -  1, etc .... 

The important observation is now that each mapping ~1  (more 
precisely its extension to ~N) has only eigenvalues of modulus lower or 
equal than 1. Indeed, the total energy (Lj norm) does not increase along 
the relaxation process and therefore the L~ norm of ~ is not larger than 
1. Furthermore there exists an integer K(A,  Ec) such that any K composi- 
tion ~-I ~ . . . . .  ~--t/ has only eigenvalues inside the unit circle/3~ This 

K I 

property comes from the fact that, for any activation sequence, and for any 
initial condition, the total loss of energy via the boundary has contribution 
from all sites. Moreover, because the whole energy of a critical site is 
redistributed proportionally on each neighbors, the total loss of energy on 
the boundary is bounded from below by a quantity proportional to the 
total initial energy, with a constant strictly lower than one. This implies 
that the mapping j-(K . . . . .  J-l', is a contraction for the Lj  norm. 

l K 

Due to the reset to zero of a critical site after relaxation, each ~ ' s  is 
a projection onto a subspace of ~N, whose dimension increases with the 
number of involved sites in the avalanches. Indeed, L,r I is a left product of 
matrices sending the configuration at time t in the avalanche, on the con- 
figuration at time t + 1. These matrices have a number of zero eigenvalues 
given by the number of sites set to zero at the corresponding time step. 
Multiplying these matrices gives raise to a kernel whose dimension is the 
maximal number of sites which have relaxed at the same time/3~ 

EXTENDED DYNAMICAL SYSTEM 

Now take a half infinite sequence of activation events i = i l . . .  in . . . .  
The succession of avalanches or translations generated by this sequence, 
starting from a given initial condition E, is given by the succession of 
elements 5al~, k = 1 .. .  n . . -  visited by the trajectory of E under the composed 
mapping . . . .  ~-~n . . . . .  ~Y~I(E). In particular, the statistics of avalanche 
duration, avalanche size, etc .... along this sequence is encoded by the 
frequency with which the trajectory visits the different elements 5el~. 

It is natural to view the process of random activations also as a 
dynamical System (X, ~r), namely the full shift cr on the set X of the N sym- 
bols labeling the sites. The SOC dynamics is then just a skew product 
system on J # = X • 1 6 3  labeled by (J-, Jg). Furthermore (X, a) is con- 
jugated to the multiplication by N mod 1, up to a countable number of 
points where the correspondence is not unique. The advantage of using a 
smooth representation for the shift system is the possibility of speaking 
about Lyapunov exponents, smooth elements of stable and unstable 
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manifolds, SBR measures, and so on. In this framework the SOC system is 
described by piecewise affine mappings, whose tangent space is split into a 
contracting part, an expanding part (the direction of the full shift), and a 
kernel. As soon as we are interested in the behavior of sufficiently long 
sequence, we can restrict the system to the projection onto the complement 
of the maximal kernel. This kernel is at most ~N-1. 

It follows that the previously described class of SOC models, can 
entirely be studied within the framework of piecewise smooth hyperbolic 
dynamical systems with singularities. 

INVARIANT SETS AND INVARIANT MEASURES 

Physically observable convergence to equilibrium corresponds to the 
convergence of a nonzero Lebesgue measure set of initial conditions 
towards an invariant set, supporting an invariant measure/~. Therefore the 
topological and metric properties of the attractors play a key role in the 
characterization of SOC equilibrium. The characterization of the invariant 
set from a topological point of view can be best achieved when the system 
is conjugated to a subshift of finite type (SFT). This means that the trajec- 
tory of almost any point can be uniquely encoded in a Markov transition 
graph between a finite number of elements. Unfortunately, this property 
usually does not hold when the invariant set intersects the singularity set 
and a complete classification of those E c values which give raise to an SFT 

f o r  a fixed A seems to be a difficult task. We can show that this property 
holds in one dimension at least for Ec ~ [ 1, 2]. On mathematical ground 
we conjecture that there exists a sufficiently small E ~ such that for almost 
every E,  ~ [0, E~ the system is conjugated to a SFT. 

From a physical point of view, the metric aspects are most relevant 
because the statistical properties of avalanche observables are encoded in 
the frequency with which the trajectory of p almost all initial condition 
visits the elements Y~. From the subsection above it follows that the 
unstable manifold of the extended dynamical system admits the Lebesgue 
measure as an invariant measure. Therefore, the basic objects to charac- 
terize the asymptotic orbit structure of the SOC dynamics are the SBR- 
measures. These are the physically relevant measures because they describe 
the asymptotic distribution of Lebesgue almost all initial conditions. Note 
that the quantity usually considered by physicists, namely the invariant 
distribution of energy is not/~ which the invariant measure of the extended 
system, but rather its projection onto g2,/~l~" 

An important quantity to characterize the fine structure of an 
invariant measure p is its Haussdorf dimension HD(p), which is defined 
as the infimum of the Haussdorf dimensions of the measure one sets. It 
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Fig. 1. (a) Two  dimensional  section of the suppor t  of the invariant  energy measure  for 
E~. = 1, N = 3. (b) Three dimensional section of the suppor t  of  the invariant energy measure  
for E,. = 1, N = 4. 
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follows from the general theory of dynamical systems with complete hyper- 
bolic structure (all Lyapunov exponents different from zero) that, when/~ 
is supported on an attractor with a one-dimensional unstable manifold, 
HD(lz) becomes arbitrary close to one if the absolute value of the ratio 
between the largest negative Lyapunov exponent and the largest positive one 
is sufficiently large. In SOC models, this intuitively means that the contrac- 
tion rate (determined by the proport ion of energy lost on the boundaries, 
and therefore by Ec) in any stable direction dominates the expansion rate 
(determined by the number of nodes) sufficiently. The implication for the 
Zhang's models on a fixed graph is that for any e > 0 there exists a E c value 
(larger than zero, but sufficiently small) such that the Haussdorf dimension 
of the invariant energy distribution in /2  is less than e. It is a much harder 
problem to get explicit bounds on HD(ct) as a function of A and E C. 
Analytic computations are possible when the model is conjugated to a sub- 
shift of finite type. An explicit computation of HD(ct) can be made for a 
2 sites model. The fractal structure is also numerically revealed, for one- 
dimensional model with N nodes. In Figs. la, lb we have plotted a two- 
dimensional section of a trajectory with 100,000 points (100,000 transients) 
for E,, = 1, N =  3 and a three-dimensional section for a trajectory of the 
same duration for Ec = 1, N = 4. These pictures indicate that the invariant 
set has a tree like Cantor structure. For  larger N this is no longer visible 
on the projection. A careful analysis of the kernel structure of the com- 
posed map in the 3 nodes case explains the global structure in Fig. la. ~3) 
This shows that besides the local fractal characteristics of r there is a non- 
trivial global geometry of the maximal invariant set which reflects the 
dependence between the states of the nodes. 

Notice that a very special case happens in one dimension, for 
E,  e [ 1, 2 ]. Namely we have a collapse of the measure onto a finite number 
of points and the set J = { 3 !  i s.t. Vkr  E k = l ,  and Ei=O o r  1} is the 
unique invariant set. 

E R G O D I C I T Y  

Ergodicity is commonly assumed in the papers dealing with SOC. 
From the mathematical point of view, there are good reasons to believe 
that ergodicity holds at least for almost every Ec values. (3~ For  the case of 
SFT one can always check it algorithmically and in this case it seems that 
a general proof  is accessible. We will discuss the problems involved in the 
proof  of ergodicity elsewhere. Under the assumption of ergodicity, every 
initial condition, for almost any activation sequence approaches the same 
invariant set, and the probability to get an avalanche of a given type is just 
the probability of the corresponding domain of continuity with respect to 
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the invariant measure. By the ergodic theorem this probability is just the 
frequency of visits of this domain for almost every activation sequence. 
Therefore, the statistical properties of avalanche in the SOC state are 
related to the metric properties of the invariant set, and its intersection 
with the partition elements. 

D I S T R I B U T I O N  OF A V A L A N C H E S  

The difference of the structure of the invariant set according to the 
value of Ec, suggests that the equilibrium distribution of energy has also a 
different form. Indeed, for E c < 1 the statistical distribution of avalanches 
observables exhibits a rather nontrivial structure. For  example, the dis- 
tribution of avalanches duration is shown for various values of E c: E c = 

0.1, 0.2, 0.3 (Fig. 2a), E~ = 0.5, 0.7, 0.9 (Fig. 2b) Ec = 2 (Fig. 2c). 
This difference in behavior comes from the fact that the avalanche 

shape exhibits a richer and richer variety when Ec decreases. After an 
avalanche all sites reached by the front have energy > ~ E S 2 d  but one site 
with a zero value. Therefore, after a sufficiently long sequence of activations 
such that any site has become critical, all sites have either energy >~Ec/2d 

or an integer value (<Ec/2d) .  In one dimension, this implies that all 
avalanches either reach a boundary or a stopping site with integer value. 
Moreover, for Ec/> 1 a zero energy site always stops a front, and the 
avalanche have all a simple rectangle-like shape. In this case, the statistical 
properties of avalanches are much easier to get. For  Ec < 1 the avalanches 
can either be stopped by a zero ("low" energy configurations), or go 
through the zero ("high" energy configurations). (3) In the first case the 
avalanche shapes are identical to the case Ec/> 1, while in the second 
several reflexions on the boundaries occur before the avalanche has lost 
sufficiently enough energy to be stopped by a zero. The number of possible 
reflections increases for decreasing Ec. ~3) 

These results show that various equilibrium states can be encountered 
according the range of the parameter E c. This raise the question of what 
is the "universal" behavior of these models. 

S E P A R A T I O N  E F F E C T S  

Several people have reported on certain properties of SOC models 
which seem to indicate that there is a weak form of correlation decay, 
namely a polynomial one (called by Bak the border of chaos). (2) Due to the 
expansion along the shift direction, one has trivial exponential decay for 
the extended system. With respect to the above-mentioned observations the 
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Fig. 2 (Continued) 

situation is different, because there, one fixes an activation sequence and 
studies the separation of two closeby points from Q with respect to the 
trajectories obtained for this fixed activation sequence. Due to the hyper- 
bolic structure, there is no local correlation decay in this case, as soon as 
the invariant measure does not "sit" on the singularity set 5 a. Indeed, two 
sufficiently close initial conditions following the same activation sequence 
enter the same elements S~ and the distance is contracted to zero by the 
composed mapping . . . .  J .  . . . .  ~,1' More precisely, if the invariant 
measure is such that for any sufficiently small e, 3~ > 0, s.t. p(~%(te)) < Ce ~, 
C > 0 ,  where ~ (Se )  is the e-neighbourhood of 50, one has the following 
result: for almost every activation sequence i and almost every point X e/2,  
3t/--t/(X,i) such that for all Y ~ ( X , r / ) ,  the distance d(~--n(X,i), 
J-"(Y, i)) -* 0 uniformly when n ~ oo (3) (this is an easy consequence of the 
local hyperbolicity and the Borel Cantelli lemma). This condition is also 
sufficient to establish the existence of a smooth local manifold almost 
everywhere. 

But, what about  the observations of Bak? There one has to deal with 
a semi local notion of separation. F rom what is said above it is clear that 
separation of X and Y along a fixed activation sequence can only happen 

822/88/1-2-22 
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if X and Y fall eventually in different domains of continuity SI ~ , SI 2. This 
�9 I 2 

can only be the case if X and Y are not on the same smooth piece of the 
local stable manifold ~WlSoc(X) of X (resp Y). Due to the presence of 
singularities the size of YCr~oc(X) is not uniform with respect to X (an excep- 
tion is the case where the system is conjugated to a SFT, where one gets 
uniform bounds on the size of yCFSoc(X ) for X being in/~lo). Because we are 
interested in results with respect to almost every activation sequence the 
quantity P(X, Y) = Prob{(Y, i) ~ ~/r }, where the probability is taken 
with respect to i and where X, Y ~/2, is exactly what measures the prob- 
ability of observing separation. Several refinements of this notion are 
possible, which take into account bounds on the time when the separation 
happens (see ref. 3). Because one wants to get P(X, Y) mainly as a function 
of d(X, Y) all what one has to study is the distribution of the size of 
~#FSo~(X ). This is a standard problem in dynamical systems theory, espe- 
cially for the class of hyperbolic systems with singularities where far 
reaching methods are available3 4) We will discuss this aspect in details in 
a forthcoming paper3 3) 

A SIMPLE EXAMPLE 

The most simple example (2 nodes) admits already a rich dynamical 
structure. Of course with respect to the classical questions about distribu- 
tions of avalanche sizes, there is nothing nontrivial to say, but besides this 
the measure structure and the symbolic dynamics exhibit already much of 
the rich behavior in the many node case. For a two nodes model, where 
one of the node is always zero, we can replace Q by the interval [0, Ec[. 
We then denote by ~ (resp. ~ )  the mapping obtained after activation 
of the nonzero site (resp. the zero site. As an example take Ec 5 = g, the 

2 2 1 mappings are: ~ {Y-I 1 = X / 2 + � 8 9  i f X < ~  and = J 1 = X/4  + a otherwise and 
J-2 = X/2 + �88 for X >  1, X being the value of the nonzero site. The following 
arrow sequence describes which consecutive applications of the mappings 
are possible in the asymptotic case: J - l ~ J - ~ ,  ~ ;  j - z ~ y l ,  J2; 

The maxi- ~ Y-l, J2, each legal transition occurring with probability ~. 
mal invariant set is contained in the interval [!,3 ~] but the Haussdorf 
dimension of/ t  I Q is less than one. Indeed, from the above transition graph, 
it follows that the probability to find 3 -2 in a typical activation sequence 
is 1, hence the negative Lyapunov exponent (in base 2 logarithm) is - 7 .  
The system being invertible on the invariant set, the Young formula 
H D ( # ) = h ~ , ( Y - ) ( 1 / I 2 + I + I / I  2 I), gives HD(t~Ia)= 6. Here 2 -+ are the 
positive (resp negative) Lyapunov exponent, and h.  the Kolmogorov Sinai 
entropy which is equal to [A +1 in the SBR case. 
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DISCUSSION 

The approach presented in this paper allows to discuss SOC in the 
framework of the theory of hyperbolic systems with singularities. We list 
now several natural questions. 

- -  Stability of the hyperbolic structure. The important point is to 
keep the local contraction property, which is robust with respect to 
changes in the distribution of energy in the relaxation process, even if the 
whole energy is not distributed uniformely to the neighbors. This implies 
that models where only a fixed value of energy is redistributed have dif- 
ferent properties. Analytical generalization, where one smooth out the 
threshold condition, are still good candidates for hyperbolic behavior 
though certainly not uniform. 

- -  Stability under stochastic perturbations. In this case (e.g., when OE 
is a random variable), we expect stochastic stability at least in the case 
where the nonperturbed system is structurally stable. 

- -  Dynamics on subgraphs on yd for d >  1. Of course, one can not 
expect to avoid in the higher dimensional case the standard problems one 
is faced in SOC-dynamics, which are mainly of combinatorial nature. Even 
with full knowledge of the invariant distribution, there remains to estimate 
the numbers of domains 5P I which give raise to avalanches of the same size. 
This is in principle algorithmically computable, but probably difficult to 
achieve in an effective way. The combinatorial difficulty problem are likely 
to become less important if E,  becomes sufficiently small. 

- -  Relationship between the characteristics of the invariant measure 
and the critical exponents for the distribution of avalanches observables. 
The multifractal spectrum is a much finer quantity to characterize the 
invariant distribution than the Haussdorf dimension, though it is in general 
difficult to establish its existence. Because it characterizes the local varia- 
tion of density of the invariant measure, one might expect close rela- 
tionships between the scaling exponents of the multifractal spectrum, and 
the critical exponents computed in SOC. 

The interesting question about universality in the thermodynamic limit 
where we lose the hyperbolic structure will be discussed in a forthcoming 
paper. (3) 
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